의약물질의 환경위해성 평가 체계 구축 방안

DC Field Value Language
dc.contributor.author 박정임 -
dc.contributor.other 최경호 -
dc.contributor.other 김영희 -
dc.contributor.other 정진용 -
dc.contributor.other 김창수 -
dc.contributor.other 김남희 -
dc.contributor.other 김명현 -
dc.date.accessioned 2017-07-05T01:35:06Z -
dc.date.available 2017-07-05T01:35:06Z -
dc.date.issued 20061230 -
dc.identifier A 환1185 2006 RE-05 -
dc.identifier.uri http://repository.kei.re.kr/handle/2017.oak/19244 -
dc.identifier.uri http://library.kei.re.kr/dmme/img/001/003/001/RE-05_An_Approach_for_Developing_Aquatic_Environmental_Risk_Assessment_Framework_for_Pharmaceuticals_in_Korea_박정임3.pdf -
dc.description.abstract Pharmaceuticals are very beneficial to people’s quality of life and cure to disease. Animal drugs are also indispensable for successful livestock farming. The environmental consequences of using pharmaceuticals have been generally ignored because of advantages of using drugs. As chemical products, however, pharmaceuticals face unique environmental challenges. We are currently recognizing pharmaceutical substances as yet another group of potentially harmful water pollutants. Prior to this report, "Pharmaceuticals in the Environment and Management Approaches in Korea (KEI, 2005)" provided an overview of issues related to the input, occurrence and fate of pharmaceuticals in the environment, the risks, as well as reviewing the environmental risk assessments developed for regulatory purposes in the EU, Canada, and the US. The study also proposed a list of proactive agendas for managing human pharmaceuticals in the environment. This study aims to prioritize pharmaceutical substances for aquatic environment risk assessment (ERA) and to provide a basis for developing the most proper and sensible strategy for pharmaceutical ERA. This report consists of two sections. The first section (Chapters 2 and 3) is about prioritizing pharmaceuticals for aquatic environment risk assessment in Korea, and the second section (Chapters 4 through 6) is devoted to conducting an ERA for selected antibiotics in order to assess the preliminary ERA strategy. The foremost chemical risk management ranking and scoring systems in the US, Canada, and European countries were reviewed. Upon examining and comparing CHEMS-1 and EURAM, both systems were found to be very similar in their general approach. Only certain parameters used for scoring exposure and toxicity were different. However, when utilizing these systems for prioritizing potentially hazardous pharmaceutical products, several intrinsic limitations were encountered. Metabolic rates and STP removal efficiencies are not considered in these exposure models. In addition, the physicochemical characteristics of pharmaceuticals differ from those of conventional persistent chemicals. Therefore, to assess the fate and transport of pharmaceuticals realistically in the environment a unique exposure modeling scheme which is different from the one used for persistent organic compounds is required. Toxicity information that focuses almost exclusively on acute toxicity data may also result in significant underestimations in the risk assessment of pharmaceuticals, since very high acute-to-chronic ratios (ACRs) are often noted for pharmaceuticals. Therefore, a novel CRS system, which addresses these issues, is required to appropriately rank the priority of pharmaceuticals for environmental evaluation. Since it may be nearly impossible to monitor and evaluate the occurrences and potential environmental risks of all active pharmaceutical ingredients, it is prudent to attempt to identify and develop a list of pharmaceuticals that deserve more immediate attention. A preliminary list of the primary pharmaceuticals of concern was developed from an inventory of human and veterinary pharmaceuticals manufactured in Korea. For human pharmaceuticals, the net amount of active ingredient produced was determined and used to rank its potential to exist in the environment. According to both EMEA and US FDA guidelines, the amount of drug produced is important in the initial screening process. For veterinary pharmaceuticals, drug production amount along with its potential to enter the environment were considered in determining priority. Three antibiotics including roxithromycin, trimethoprim, and chloramphenicol were chosen from among the top ranked pharmaceuticals of interest for further environmental risk assessment. Sampling studies were conducted to measure the concentration levels of these pharmaceuticals at various sites in Korea. The study results indicated that the flow-rate conditions in the body of water sampled appear to have an immediate impact on the pharmaceutical levels. Water samples collected from STP influent or effluent water showed higher levels of the test compounds than the levels observed in ambient water samples. The 95% upper confidence limit (UCL) of the mean concentration was chosen as the representative ’measured environmental concentration (MEC)’ for each compound. Toxicology studies on various biological organisms using the three test antibiotics, along with literature reviews, were undertaken to establish the drug’s PNEC. The MEC was divided by the appropriate PNEC to derive the hazard quotient (HQ) of a given compound. No test antibiotic was identified to have an HQ greater than one, suggesting their tendency for potential environmental impact may be low. It should be noted that however, only standard ecotoxicity data mostly from acute exposures were available. There is a need for studies with more subtle but ecologically meaningful endpoints, e.g., reproduction, endocrine disruption, and effects on multiple levels of biological organizatons to better understand environmental consequences of pharmaceuticals in the environment. On the basis of findings presented in this report, further research was suggested in several areas. These include: 1) characterizing parameters that influence environmental concentrations of pharmaceuticals, 2) developing an exposure model framework that could be applied for a more accurate estimation of PECs for pharmaceuticals that are used both in human and veterinary medicine, and 3) developing sensitive and ecologically meaningful measures of hazard assessment. -
dc.description.tableofcontents Foreword <br>Abstract <br>Acronym List <br> <br> I. Introduction/Jeongim Park <br> <br> 1. Research Background and Rationale <br> 2. Review of Recent Research in Korea <br> 3. Scope and Objectives <br> <br>PART I. Prioritization of Pharmaceuticals of Concern in Korean Environment <br> <br> Ⅱ. Are the Existing Ranking Systems for Chemicals Applicable to <br> Pharmaceuticals, too? / Myung-Hyun Kim, Jeongim Park <br> <br> 1. Introduction <br> 2. Overview of Prioritization Methodologies for Chemicals <br> A. CHEMS-1 <br> B. EURAM <br> 3. Conclusion <br> <br> Ⅲ. Prioritizing Pharmaceuticals for Aquatic Risk Assessment in Korea / <br> Myung-Hyun Kim, Jin-Yong Jung, Jeongim Park <br> <br> 1. Prioritizing Human Pharmaceutical Substances for Environmental Risk <br> Management in Korea <br> A. Literature Review on Prioritization Tools <br> B. Data Collection and Coalition <br> 2. Prioritization of Veterinary Medicines for Environmental Health <br> Management in Korea <br> A. Introduction -
dc.description.tableofcontents . -
dc.description.tableofcontents I. Introduction <br> 1. Research Background and Rationale <br>2. Review of Recent Research in Korea <br>3. Scope and Objectives <br> PART I. Prioritization of Pharmaceuticals of Concern in Korean Environment <br> II. Are the Existing Ranking Systems for Chemicals Applicable to Pharmaceuticals, too? <br> 1. Introduction <br>2. Overview of Prioritization Methodologies for Chemicals <br>A. CHEMS-1 <br>B. EURAM <br>3. Conclusion <br> <br>III. Prioritizing Pharmaceuticals for Aquatic Risk Assessment in Korea <br> 1. Prioritizing Human Pharmaceutical Substances for Environmental Risk Management in Korea <br>A. Literature Review on Prioritization Tools <br>B. Data Collection and Coalition <br>2. Prioritization of Veterinary Medicines for Environmental Health Management in Korea <br>A. Introduction <br>B. Materials and Method <br>C. Results <br>D. Discussion <br>E. Conclusion <br>3. Preliminary List of Pharmaceuticals of Concern <br> PART II. Environmental Risk Assessment for Selected Antibiotics in Korean Aquatic Environment <br> IV. Environmental Occurrence of Selected Antibiotics in Han River basin <br> 1. Identification of Candidate Antibiotic Substances <br>A. Measures Employed for Prioritization of Pharmaceuticals <br>B. Potential to Enter the Environment <br>C. Fate in the Environment <br>D. Ecotoxicity <br>E. Prioritization of Human and Veterinary Antibiotics <br>2. Analytical Method Development and Validation <br>A. Materials <br>B. Sampling and Sample Preparation <br>C. LC-ESI-Tandem MS Analysis System <br>D. Optimization of SPE Method <br>E. HPLC-ESI-Tandem-MS Method Development and Validation <br>3. Determination of Selected Antibiotics <br>A. Site Selection and Sampling <br>B. Sample Analysis <br> V. Acute Aquatic Toxicities of Selected Antibiotics <br> 1. Introduction <br>2. Materials and Method <br>A. Chemicals <br>B. Bioassays <br>C. Statistical Analysis <br>3. Acute Aquatic Toxicities of the Selected Antibiotics <br>4. Implications and Future Challenges <br> VI. Environmental Risk Assessment for the Selected Antibiotics <br> 1. Introduction <br>2. Environmental Risk Assessment for the Selected Antibiotics <br>A. Environmental Concentrations of Pharmaceuticals <br>B. Measured Environmental Concentrations of the Test Pharmaceuticals <br>C. Derivation of Predicted No Effect Concentrations (PNECs) of Pharmaceuticals <br>D. Characterization of Environmental Risk <br>3. Challenges in Environmental Risk Assessment of Pharmaceuticals and Suggestions <br>A. Parameters that Influence Environmental Concentrations of Pharmaceuticals <br>B. Sensitive Measures of Biological Impact <br>C. Parameters to be Incorporated in Addressing Pharmaceuticals in the Environment <br> VII. Discussion and Conclusions <br> 1. Summary of Findings <br>A. Review of the Existing Chemical Ranking and Scoring System <br>B. Prioritization of Pharmaceuticals of Concern in the Korean Environment <br>C. Risk Assessment of the Selected Antibiotics <br>2. Recommendations for Future Research <br>A. Parameters that Influence Environmental Concentrations of Pharmaceuticals <br>B. Use of an Integrated Exposure Model for Human and Veterinary Pharmaceuticals <br>C. Development of Sensitive Endpoints of Ecological Relevance <br> [Appendix] Human Pharmaceutical Substances Produced <br> 7,000 kg in 2003 <br> Abstract in Korean -
dc.format.extent 174 p. -
dc.language 영어 -
dc.publisher 한국환경정책·평가연구원 -
dc.subject Environmental risk assessment- Korea (Republic of) -
dc.title 의약물질의 환경위해성 평가 체계 구축 방안 -
dc.type 기본연구 -
dc.title.original An Approach for Developing Aquatic Environmental Risk Assessment Framework for Pharmaceuticals in Korea -
dc.title.partname 연구보고서 -
dc.title.partnumber 2006-05 -
dc.description.keyword 정책일반 -
dc.description.bibliographicalintroduction 의약품은 인체의 질병을 치료하고 건강을 개선하는 데 없어서는 안될 중요한 물질이다. 또한 축산에서도 동물의 질병치료와 사료첨가제로 사용되는 필수적인 물질이다. 이러한 의약품의 편익에 가려 의약품을 사용한 이후 환경에 미치는 영향은 최근까지 간과되어 왔다. 그러나 환경적인 관점에서 본다면 의약물질도 화학물질의 일종이기 때문에 수질에 나쁜 영향을 끼칠 수 있는 잠재적 오염물질로서 문제를 내포한다. 본 연구에 앞서 KEI는 "Pharmaceuticals in the environment and management approaches in Korea (KEI 기본연구과제보고서, 2005년)"에서 이미 환경 중 의약물질의 잠재된 위해성에 관하여 전반적으로 문제를 제기한 바 있다. 즉, 의약물질의 환경 중으로의 유입, 환경 중 검출과 환경 매체간의 거동, 잠재된 환경위해성 및 EU, 미국, 캐나다 등에서 적용 또는 개발 중인 의약물질의 환경위해성평가 관련 규제에 관하여 정리하였다. 또한 환경 중 인체의약물질을 적극적으로 관리하기위한 방안을 제안하기도 하였다. 본 연구의 목적은 물환경 중 환경위해성평가가 필요한 의약물질의 우선순위를 정하는 것과 몇 가지 사례 의약물질을 대상으로 환경위해성평가를 수행하는 것이다. 본 연구보고서는 두 부분으로 나뉘어져 있다. 제2장과 3장에 해당하는 앞 부분은 환경위해성평가가 필요한 의약물질 선정에 관한 내용이고, 4장부터 6장까지는 일부 항생물질에 대하여 환경위해성평가를 시범적으로 실시함으로써 본 연구에서 제안한 환경위해성평가 전략의 타당성을 검증하는 내용이다. 우선, 미국, 캐나다 및 유럽 등지에서 화학물질의 위해성 관리를 위하여 개발되어 사용중인 우선순위선정 기법에 관하여 검토하였다 (제2장). CHEMS-1 와 EURAM의 체계를 비교한 결과 이들은 노출과 독성을 점수화하는 일부 지수들만을 제외하고는 일반적인 접근법에 있어서는 매우 유사하였다. 그러나, 이들 방법을 환경위해성 평가가 필요한 의약물질의 우선순위를 정하는 데에 직접 적용하기에는 원칙적인 부분에 몇 가지 제한이 있는 것으로 판단되었다. 즉, 의약물질의 체내대사율 및 하수처리효율이 이들 모형에는 고려되지 않았다는 점, 의약물질의 물리화학적인 성질이 전통적인 잔류성 화학물질과는 다르다는 점 등이 그 예이다. 따라서 의약물질의 환경 중 거동을 현실적으로 반영하기 위해서는 잔류성 유기화학물질과는 다른 의약물질 고유의 노출모형이 필요하다. 또한 의약물질의 경우 일반 화학물질보다 매우 높은 급성-만성 독성비율 acute-to-chronic ratios (ACRs) 을 나타내는 경향이 있으므로 급성독성에만 전적으로 의존하는 독성평가 방식은 의약물질의 위해성을 심하게 과소평가할 우려가 있다. 따라서 앞서 열거한 제한점과 특성을 제대로 반영하는 의약물질 고유의 우선순위 선정방법이 필요함을 알 수 있다. 의약품에 사용되는 모든 성분에 대하여 환경 중 노출을 감시하고 환경위해성 평가를 실시하는 것은 불가능하다. 따라서 관심을 기울여야 할 필요가 있는 의약물질을 선정하고 우선 순위를 정하는 것이 타당하다. 본 연구를 통하여 우리나라에서 우선 고려되어야 할 인체 의약물질과 동물의약물질의 목록(안)이 도출되었다(제3장). 인체 의약물질의 경우 활성의약성분의 생산량을 계산한 후 이에 근거하여 환경 중에 존재할 가능성의 순위를 매겼다. 유럽의 EMEA와 미국의 FDA 가이드라인에 따르면 의약품의 생산량은 일차적인 선정절차로 의미가 있다. 동물용 의약물질은 의약품 생산량과 환경유입가능성을 고려하여 순위를 매겼다. 록시트로마이신 (roxithromycin), 트리메토프림 (trimethoprim), 클로람페니콜 (chloramphenicol) 등 세 가지 항생제 성분에 대하여 환경위해성평가를 시범적으로 실시하였다(제4장~제6장). 한강수계에서 시료를 채취하여 이들 항생제 성분의 농도를 측정하였다. 분석 결과 수계의 유량이 의약물질 농도에 결정적인 영향을 미치는 것으로 나타났다. 하수처리장 유입수와 방류수에서 측정한 농도가 일반 하천에서 채취한 시료에서의 농도보다 일반적으로 더 높았다. 성분별 환경 중 측정농도 ’measured environmental concentration (MEC)’의 대표값으로 측정값들의 평균치의 상위 95% 신뢰값 (95% upper confidence limit (UCL) of the mean concentration)을 계산하였다. 이들 성분에 대한 독성시험을 통하여 성분별 무영향농도(PNEC)를 추정하였다. MEC를 PNEC로 나누어 위험지수(hazard quotient, HQ)를 계산한 결과 위험지수가 1을 초과하는 물질은 발견되지 않았다. 본 연구 결과 다음과 연구가 계속 필요할 것으로 제안되었다. 1) 의약물질의 환경 중 농도에 영향을 미치는 인자들의 특성을 파악하고, 2) 환경 중 인체 의약물질 및 동물 의약물질의 농도를 더 잘 추정할 수 있는 노출모형을 개발하고, 3) 생태학적으로 의미있는 독성평가를 할 수 있도록 더욱 민감한 평가방법을 개발하는 것 등이다. -
dc.contributor.authoralternativename Park -
dc.contributor.authoralternativename Jeong-Im -
dc.contributor.otheralternativename Choi -
dc.contributor.otheralternativename Kyungho -
dc.contributor.otheralternativename Kim -
dc.contributor.otheralternativename Young-Hee -
dc.contributor.otheralternativename Jung Jin-Yong -
dc.contributor.otheralternativename Kim -
dc.contributor.otheralternativename Chang-Soo -
dc.contributor.otheralternativename Kim -
dc.contributor.otheralternativename Nam-Hee -
dc.contributor.otheralternativename Kim -
dc.contributor.otheralternativename Myung-Hyun -
Appears in Collections:
Reports(보고서) > Research Report(연구보고서)
Files in This Item:

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse