감염성 질병예방을 위한 질병-생태 통합평가시스템 구축 종합연구(I)

DC Field Value Language
dc.contributor.author 이후승 -
dc.contributor.other 사공희; 주용준; 윤성호; 김선숙; 김혜권; Huettmann Falk; 지민규; 정슬기 -
dc.date.accessioned 2022-03-31T16:30:14Z -
dc.date.available 2022-03-31T16:30:14Z -
dc.date.issued 20211231 -
dc.identifier A 환1185 사업2021-11-01 -
dc.identifier.uri https://repository.kei.re.kr/handle/2017.oak/23480 -
dc.identifier.uri http://library.kei.re.kr/dmme/img/001/014/011/사업2021_11_01_이후승.pdf -
dc.description.abstract Ⅰ. 연구의 배경 및 목적 1. 연구배경 ? 코로나19, 아프리카돼지열병, 조류인플루엔자 등 국외 인수공통 감염병 유입과 기후변화 및 생활문화 변화로 인한 인수공통 및 매개체 감염병 확산으로 국가공중보건위기가 증가하고 있음 ㅇ (국외유입) 최근 코로나19 전 세계 확대(’20.4), 메르스 국내 유입(’18.9) 및 중국 조류인플루엔자 인체감염 환자 지속 발생 등 국외유입 위협 지속 ㅇ (인수공통전염병) 기후변화 및 개발사업 등으로 인한 생태계 훼손 및 서식지를 잃은 야생생물(전염병 자연 숙주)의 확산과 외래생물 유입 등 생태환경 변화에 따른 감염 위험성 증가 ㅇ (장기화, 토착화) 야생생물 생활사에 따른 계절적 개체군 변동, 이동 및 확산 등으로 감염성 질병의 지속적인 발생이 반복됨에 따라 국가보건체계 부담 가중 ㅇ (사후대응) 생물매개 감염성 질병 대응이 발병 후 대응하는 수비전략으로 수행되어 백신 및 치료제를 개발하는 동안 경제적 피해가 급증하는 등 사후대응체계의 취약성, 한계성 노출 ? ‘선 발생, 후 대응’의 수동적 위기대응보다 인수감염 질병의 근본적인 원인을 제한·조절하는 능동적이고 선제적인 사전예방적 대응정책이 요구됨에 따라 환경보전-생물다양성 정책의 유기적 연계와 질병예방을 위한 질병-생태 통합평가체계 구축이 필요함 ㅇ 코로나19(박쥐 등 매개), 아프리카돼지열병(봄, 여름), 조류인플루엔자(가을, 겨울) 등 감염성 질병이 매년 반복적으로 발생하고 있으나 유입, 예찰 및 예방 체계가 미흡하여 계절별 발생 및 확산 현황 분석에 따른 계절관리체계 수립이 시급 ㅇ 사전예방적 질병매개 생물의 유입-확산-대응에 대한 사전예방적 체계 마련과 감염병에 대한 민감성 및 취약성을 평가하기 위한 질병-생태통합시스템의 상시적 운영이 필요 2. 연구목적 ? 코로나19 등 감염성 질병예방을 위한 질병-생태 통합평가시스템(IDEA System: Integrated Disease-Ecology Assessment System) 구축과 사전예방적 생태 기반 질병 전망 및 진단 체계를 위한 종합 연구를 수행하고자 함 ㅇ(기반마련) 생태-공간 개발 신규 가능 야생생물 매개질병의 유입-확산-대응 체계 구축을 위한 기반 마련 ㅇ(평가체계) 감염성 질병의 생태 및 지형 기반의 전 과정 진단을 통한 위험성-대응 평가체계 및 시스템 구축 ㅇ(예방체계) 국가 생물자원에 대한 통합 평가 기반 감염성 질병 예방체계 구축 Ⅱ. 야생동물매개 질병에 대한 생태기반 평가 현황 1. 국내에서 발생한 감염성 질병과 팬데믹 ? 한반도의 생물지리학적 특성을 고려할 때 다양한 생물상의 교차역이자 전염성 질병의 유입·유출이 빈번한바 이를 고려한 정교한 평가체계 구축과 운영이 필요함 ㅇ 국제적으로 중요한 철새네트워크의 교차역이자 대륙과 연결된 반도로 다양한 생물상의 분포·경유하고 있어 생태적 중점역으로서의 보전과 개발 그리고 생물다양성과 질병확산이 상충되는 영역이 발생 ㅇ 조류인플루엔자의 경우 새로운 형태의 변이가 지속적으로 발생하고 있기 때문에 다양한 지역에서 보이는 한반도의 생물지리학적 특성으로 지속적인 위험성 노출이 불가피하게 심화 2. 전염성 질병에 대한 생태학적 관점으로의 변화 ?감염성 질병 발생을 파악하기 위한 가장 기본적인 접근방법인 질병 확산 예측도를 구성하는 일은 관련 데이터의 한계로 인해 어려우므로 신뢰성 확보를 위한 생태학적 관점으로의 접근이 필요한 시점임 ?질병의 정량화를 위하여 질병에 대한 정보와 매개생물의 분포와 이동 등에 대한 정보의 융합을 통해 위험성 평가와 예측 가능한 평가모델 체계 구축이 필요함 ㅇ질병의 예측모델을 개발하기 위해서는 정량분석 알고리즘 등을 포함한 기계학습과 인공지능의 역할 등 다양한 평가체계가 필요 ? 사전예방적 차원의 위험성 평가와 질병 예측을 위한 생태기반평가의 정책방향으로 기초적인 생태조사와 확보된 데이터에 대한 고도화된 평가툴의 도입이 필요하며 나아가 사회-경제 분야의 팬데믹과 관련된 개념과 방법 도입이 필요함 ㅇ 팬데믹과 관련된 정책적 노력을 지역과 국가를 넘어 세계적 차원으로 확장하기 위해 국지적 영향예측과 전 지구적 확산 등의 통일된 평가체계 마련이 필요 Ⅲ. 국내 발생 주요 야생동물매개 질병의 질병-생태 통합평가 기반 분석 1. 코로나19 관련 국내 박쥐 생태와 감염병 토착화 대응을 위한 기반 분석 ? 코로나19 등과 같은 코로나바이러스의 숙주로 ‘박쥐’는 사람과 같은 포유류로 종간 장벽이 상대적으로 낮아 다양한 질병이 전염될 확률이 높은 종이나, 국내 박쥐에 대한 연구는 미흡한 상황임 ㅇ 환경부 국립환경과학원에서는 2016년부터 박쥐 등 야생포유류 감염병 조기감지 및 분포 특성에 대한 연구 수행 - 겨울철 조류 동시 센서스와 같은 분류군에 대한 정밀 분포 연구는 미실시 - 박쥐를 포함한 감염병 매개 생물에 대한 종 특이적인 연구도 미흡 -2016년 박쥐 시료 672점에서 검출된 코로나바이러스는 16건으로 약 2.3% 검출 -지속적인 박쥐의 모니터링과 바이러스 검사가 필요 ? 바이러스성 감염병에 대응하기 위해 사용하고 있는 전략과 도구는 바이러스의 정체를 알고 정보를 확인하였을 때 적용할 수 있는 만큼 바이러스의 정체를 미리 알아내거나 바이러스가 변화하는 패턴을 연구하여 미래 바이러스의 정보를 알아내기 위해 생태기반의 연구가 필요함 ㅇ 신규 전염병은 야생동물과 관련성이 높은 경우가 대다수이며, 야생동물의 포획 및 섭취 과정에서의 접촉이 주된 원인이 될 수 있고, 크게는 기후변화와 산업화에 따른 야생동물 생태환경의 변화가 하나의 원인 ㅇ 야생동물 서식지 변화에 따른 사람 또는 가축과 야생동물 간의 빈번한 접촉이 신규 전염병의 발생과 연관 2. 국내 주요 감염성 질병 매개체의 시계열적 공간 분포 및 서식지 이용성 평가 ? 조류인플루엔자 유입-확산-대응 체계 마련을 위해서는 철새 이동에 관련된 환경 요인에 대한 분석, 계절기후 전망과의 연계, 생물다양성 평가, 조류 생활사 연구, 사육 입지에 대한 EIA 평가 등 조류생태학적 분석이 함께 수행되는 것이 필요함 ㅇ 2014~2018년 동안의 19가지 생물기후 변수(Bioclimatic variables)를 이용하여 조류인플루엔자 매개종의 분포를 예측 - 기후 외의 환경요인으로는 표고, 토지피복, 경사, 향, 계곡 등을 이용 ㅇ 조류인플루엔자로 인한 피해가 예상되는 종으로서 큰기러기에 대한 분포예측과 가금 농장과의 접촉위험도 평가 -가금농장과 예측된 큰기러기의 분포 면적이 겹치는 정도는 전체 가금농장 면적 중 월동기 22% -가금농장과 겹치는 큰기러기의 분포 면적을 보면, 5개월 동안 겹치는 면적은 499km2, 이후 순차적으로 4개월 421km2, 3개월 375km2, 2개월 520km2, 1개월 1,140km2로 평가 ? 아프리카돼지열병의 매개가 되는 멧돼지의 연주기적 분포패턴에서 연중 서식하며 뚜렷한 번식기가 정해져 있지 않은 종의 특성을 고려할 때 시기에 따른 직접적인 영향보다 시기에 따른 환경의 변화에 공간 이용이 주로 영향을 받는 것으로 판단됨 ㅇ 멧돼지의 경우 조류와 달리 모델 정확성이 다소 부족한 모습을 보이나, 매 계절 분기별로 분포 면적이 유사하다는 것이 확인 - 봄-여름에는 멧돼지의 번식이 이루어지기 때문에 가을-겨울에 주로 먹이를 찾기 위해 농가 및 축사 등에 접근하고 있으며 이로 인한 접촉 위험성이 증가할 수 있는바 연중 감시체계 유지 필요성 개진 Ⅳ. 질병-생태 통합평가를 위한 생물다양성 평가 활용방안 ? GenBank를 이용한 국내 125종의 포유류 중 119종(95.2%)에 대한 미토콘드리아 유전체서열을 확보 및 베이지안 추론 기반 계통수를 작성함 ㅇ 선행연구에서 제시된 ‘국가 생물다양성 지도 작성(안)’에 따라 포유류의 계통적 다양도 지도 작성 - 계통적 다양도 결과와 종 다양도 결과는 경기 북부, 강원도, 경상북도 및 충청남도 일대가 서로 유사하게 높은 것으로 나타났으며, 두 평가결과를 상호보완적으로 이용함으로써 질병-생태 통합평가의 체계를 구축할 수 있을 것으로 사료 ㅇ ASF 대응을 위한 멧돼지 제거전략에서 생물다양성 측면에서의 영향에 대해 계통적 다양도 평가기법을 이용하여 분석 - 자연생태계에서 생물다양성과 최상위 포식자 간의 양의 상관관계를 이용하여 멧돼지 제거전략으로 인한 생태적 균형(equilibrium)의 지속성을 평가 - 2020년 초반에는 생태계 균형이 지속되었으나, 2020년 중후반 및 2021년 초반까지 무너진 생태계 균형이 지속되고 있는바, 이는 생태계 균형에 멧돼지 제거로 인한 교란이 발생했음을 의미 Ⅴ. 결론 및 정책 제언 ? 야생생물매개 질병에 대한 평가와 예측은 상당히 많은 불확실성을 내포하고 있기 때문에 연구와 정책적 대응전략을 수립하는 데 한계성과 제한성이 높은바 생물종 자체의 생활사적 특성에 따른 이동·확산의 불확실성을 최소화하기 위한 계절적 영향 및 군집 내 생물다양성 구조에 대한 평가기반 체계마련이 필요 ㅇ 본 연구의 최종성과물은 야생생물을 매개로 하는 감염성 질병예방을 위한 질병-생태 통합평가시스템을 구축하는 것으로 사전예방적 정책지원을 위한 생태 기반의 질병 전망 및 진단 체계 수립을 목적으로 수행 - 본 보고서는 1차 연도 연구로서 국내에서 발생한 주요 야생생물매개 질병에 대한 현황과 주요 매개생물에 대한 환경정보에 따른 분포확산 범위와 가금농장 등 직접적인 피해유발 시설물에 대한 위험성 분석을 실시 - 통합평가시스템 구축을 위한 생물다양성 평가의 활용방안을 제시하기 위한 국내 포유류에 대한 유전정보 기반의 계통도 작성과 계통적 다양성 평가지수 개발 ? 일반적인 감염성 질병이 아닌 야생생물을 매개로 하는 질병, 특히 그 질병에 대한 매개종이 무엇인지, 어떤 경로로 어떻게 확산될 것인지 그리고 언제 질병의 확산이 시작될 것인지 등 다양한 불확실성을 최소화하고 정책적인 대응체계를 구축하는 것이 필요함 ㅇ 관리방안 수립에서 종의 생활사적 특성(life-history traits)과 서식지 기반의 특성 그리고 질병발생 현황의 질병-생태 빅데이터를 기반으로 한 공간적 관리방안을 수립하는 것이 필요 ? 생물에 대한 부처 간의 전문성을 고려한 정책이행을 수행하는 데 농립축산식품부는 가축 및 가금 등의 사육대상 동식물에 대한 체계적인 방역체계 구축에, 환경부는 생물다양성 증진을 위한 야생생태계 내 질병 확산을 예방하는 방역체계 구축에 집중할 필요가 있음 ㅇ 영국 등 선진국의 경우, 야생생물매개 질병에 대한 대응정책은 ‘자연생태계 모니터링-시료에서 바이러스 검출-대응방안’의 3단계 전문화 과정을 기반으로 수립 - 자연생태계 모니터링의 경우, 전문기관과 시민사회 자료를 이용하여 매년 업데이트 - 바이러스 검출과 대응전략은 관련 전문기관에서 수립·반영 ㅇ 국내의 경우 조류인플루엔자와 같은 야생생물매개 질병에 대한 표준행동지침 내용이 부처 간 상당수 중첩되고 있어 현장에서의 혼란을 초래 - 국가차원에서도 모니터링 및 예찰(시료분석) 등이 부처 간 중복되는 현상이 발생 - 부처 고유의 업무와 중점-협력부서의 체계에 따른 운영이 필요 -
dc.description.abstract Ⅰ. Background and Aims of Research 1. Necessity and purpose of research ? The national public health crisis is accelerating due to the influx of common infectious diseases such as COVID-19, African Swine Fever (ASF), and Avian Influenza (AI), and the spread of zoonotic diseases caused by climate change and changes in life and culture. ㅇ (Introduction) The recent pandemic of COVID-19 worldwide (April 2020), the introduction of MERS into Korea (September 2018), and the continued occurrence of human infection with avian influenza in China. ㅇ (Zoonosis) The risk of infection increases due to changes in the ecological environment, such as damage to the ecosystem due to climate change and development projects, the dispersal of wildlife, and the spread of introduced species. ㅇ (Prolongation, naturalization) As the continuous occurrence of zoonotic diseases is repeated due to seasonal population fluctuations, movement, and spread according to the life history of wildlife, the burden on the national health system is increased. ㅇ (Post-response) Zoonotic disease response is carried out with a defensive strategy to respond to after the outbreak, and while developing vaccines and treatments, follow-up systems to deal with matters such as a surge in economic damage are vulnerable and limited. ? As active, preemptive, and proactive response policies are required to limit and control the fundamental causes of infectious diseases rather than passive crisis responses of “response after occurrence” it is necessary to establish an integrated disease-ecological assessment system to ensure an organic linkage between environmental conservation and biodiversity policies. ㅇInfectious disease outbreaks including zoonotic diseases such as COVID-19 (e.g. bat), African Swine Fever (spring, summer), and avian influenza (autumn, winter) occur repeatedly every year, but prediction and prevention systems are insufficient, so it is urgent to establish a seasonal management system according to seasonal occurrence and spread. ㅇ It is necessary to establish a proactive system for the inflow, diffusion, and response of proactive disease mediators and to regularly operate the disease-ecointegration system to assess sensitivity and vulnerability to zoonotic diseases. 2. Purpose of the research ? It aims to establish an Integrated Disease-Ecology Assessment System (IDEA System) to prevent zoonotic diseases such as COVID-19 and conduct comprehensive research on developing a prediction/prevention system for ecology-based diseases. ㅇ (Fundamental preparation) Laying the foundation for establishing an introduction-spread-response system based on spatial-ecology. ㅇ(Assessment system) Establishment of a risk-response assessment framework and system by examining the entire process based on the ecology and topography of zoonotic diseases. ㅇ(Prevention system) Establishment of an zoonotic disease prevention system based on an integrated assessment of national biological resources. Ⅱ. Current Status of Ecology-based Assessment of Zoonotic Diseases 1. Zoonotic diseases and pandemics in Korea ? Considering the biological geographic characteristics of the Korean Peninsula, it is necessary to establish and operate a sophisticated assessment system that takes into account various ecological intersections and frequent introduction of zoonotic diseases, both into Korea and from Korea to other countries. ㅇ As it is at the intersection of internationally important migratory bird networks and a peninsula connected to a continent, various species are distributed on it and pass through it, resulting in areas where conflicts between conservation as an ecological center and development, and biodiversity and disease spread occur. ㅇ In the case of avian influenza, new types of mutations continue to occur and continuous risk exposure is inevitably intensified due to the biological geographic characteristics of the Korean Peninsula seen in various regions. 2.Shifting to the ecological perspective in viewing infectious diseases ? Predicting and mapping the diseases, the most basic approach to identify the occurrence of infectious diseases, is not easy due to limited data, so an approach from the ecological perspective to secure reliability is needed. ? In order to quantify disease progression, it is necessary to establish a risk assessment system and predictable assessment model through the fusion of information on the disease and information on the distribution and movement of reservoirs. ㅇIn order to develop a disease prediction model, various assessment systems using machine learning including quantitative analysis algorithms and artificial intelligence and so on are required. ? As to policy development for proactive risk assessment and disease prediction, it is necessary to introduce basic ecological surveys and advanced assessment tools for secured data, and further introduce concepts and methods related to pandemic diseases in the socio-economic field. ㅇ In order to expand policy efforts related to pandemic diseases at the global level beyond regions and the nation, it is necessary to prepare a unified assessment system such as one for both local impact and global spread prediction. Ⅲ. Analysis Based on Integrated Disease-Ecological Assessment of Major Zoonotic diseases Occurring in Korea 1.Base analysis of the ecology of bats in Korea and the naturalization of infectious diseases related to COVID-19 ? As a host of coronavirus such as COVID-19, “bats” are mammals like humans and have a relatively low interspecies barrier, which are highly likely to spread various diseases, but there are few studies on bats in Korea. ㅇ The Ministry of Environment’s National Institute of Environmental Research has conducted research on early detection and the characteristics of the distribution of infectious diseases in wild mammals such as bats since 2016. - A detailed distribution study of classification groups such as the winter waterbird census has not been conducted. - Specialized studies in species that transmit infectious diseases including bats are also insufficient. - In 2016, 16 cases of coronavirus were detected in 672 bat samples, which is about 2.3%. - Continuous monitoring of bats and virus testing are required. ? As the strategies and tools used to cope with viral infectious diseases can be applied after the virus has already been identified and the data verified, ecology-based research is needed to identify the virus in advance or to study the changing patterns of viruses in the future. ㅇ New zoonotic diseases are mostly related to wild animals, and contact in the capture and consumption process of wild animals can be the main cause, and largely, changes in wildlife habitats due to climate change and industrialization are another cause. ㅇ Frequent contact between humans or livestock and wildlife due to changes in wildlife habitats is associated with the occurrence of new infectious diseases. 2. Time-series spatial distribution and habitat usability assessment of major reservoirs in Korea ? To prepare an avian influenza introduction-spread-response system, it is necessary to conduct bird ecological analysis such as analysis of environmental factors related to migratory bird migration, linkage with seasonal climate prospects, biodiversity assessment, life history, and EIA assessment of breeding location. ㅇPrediction of the distribution of avian influenza reservoirs using 19 bioclimatic variables during 2014~2018. - As environmental factors other than climate, elevation, land cover, slope, incense, valley, etc. are used. ㅇ Prediction of the distribution of Bean geese (Anser fablis) as a species expected to be damaged by avian influenza and assessment of the risk of contact with possible farms. - The degree to which the distribution area of the predicted Bean geese overlaps with the poultry farm area is 22% of the total poultry farm area. - Looking at the distribution area of bean geese overlapping with poultry farms, the area overlapping for five months is assessed as 499km2, followed by four months 421km2, three months 375km2, two months 520 km2, and one month 1,140km2. - The results of distribution prediction and contact risk of bean geese, which were major reservoirs of AI outbreaks in 2020~2021, are similar to the actual occurrence status. ? Considering the characteristics of wild Boars(Sus scrofa) that live throughout the year and do not have a clear breeding period, it is judged that space use is mainly affected by changes in the environment over time rather than direct effects according to different time periods. ㅇ In the case of wild boars, unlike birds, the model accuracy is somewhat low, but it is confirmed that the distribution areas are similar by quarter every season. - Wild boars breed during spring and summer, so they go to farms and livestock houses to find food mainly in autumn and winter, which may increase the risk of contact, raising the need to maintain a monitoring system throughout the year. Ⅳ.How to Utilize Biodiversity Assessment for Integrated Disease- Ecology Assessment ? Securing mitochondrial genomic sequences for 119 species(95.2%) out of 125 species of mammals in Korea using GenBank and building Bayesian inference-based phylogenetic trees. ㅇ Create diversity maps of mammals according to the ‘National Biodiversity Map(draft)’ presented in previous studies. - Both the phylogenetic diversity map and species diversity map show that northern Gyeonggi-do, Gangwon-do, Gyeongsangbuk-do, and Chungcheongnam-do have high diversity, and the two assessment results can be used complementarily to establish an integrated disease- ecology assessment system. ㅇ Analysis of the impact in terms of biodiversity on wild boar removal strategies for ASF response using a phylogenetic diversity assessment technique. - Using the positive correlation between biodiversity and top predators in the natural ecosystem, the persistence of ecological equilibrium due to the wild boar removal strategy is assessed. - The ecosystem equilibrium was maintained in early 2020, but the collapsed ecosystem balance continued until mid-to-late 2020 and early 2021, which means that disturbance occurred in the ecosystem equilibrium due to the removal of wild boars. Ⅴ. Conclusion and Suggestions ? Since assessment and prediction of zoonotic diseases connote a high level of uncertainty, there are limitations in establishing research and policy response strategies. Therefore, it is necessary to establish an assessment- based system for seasonal effects and biodiversity structures in clusters. ㅇThe final outcome of this study is an integrated disease-ecology assessment system for preventing infectious diseases transmitted by wildlife, and this study aimed to establish an ecology-based disease prediction/prevention system for proactive policy support. - As a first-year study, this report analyzes the current status of major zoonotic diseases in Korea, the scope of distribution of major reservoirs according to environmental information, and the risk of direct damage to facilities such as poultry farms. - A genetic information-based phylogenetic diagram was built and a phylogenetic diversity assessment indices for domestic mammals was developed to suggest ways to utilize biodiversity assessment for establishing an integrated assessment system. ? It is necessary to minimize various uncertainties related to diseases such as uncommon infectious diseases, especially those that are transmitted by wildlife, in terms of how they will spread, when the outbreak will occur, and so on, and to establish a policy response system. ㅇ In establishing a management plan, it is necessary to establish a spatial management plan based on life-history traits, habitat characteristics, and disease-ecology big data on disease occurrence status. ? The Ministry of Agriculture, Food and Rural Affairs needs to establish a systematic quarantine system for animals and plants that are bred, and the Ministry of Environment needs to focus on establishing a quarantine system to prevent the spread of diseases in the wild ecosystem in order to promote biodiversity. ㅇ In the case of developed countries abroad, such as the UK, the three-step specialization process of “monitoring the natural ecosystem-detecting viruses in samples-developing countermeasures” is implemented for zoonotic diseases. - In the case of natural ecosystem monitoring, the status is updated every year using data from specialized institutions and the civil society. - Virus detection and response strategies are established and reflected by relatve specialized institutions. ㅇ In Korea, much part of the behavior guidelines on animal-borne diseases such as AI released by the Ministry of Environment overlaps with those of other ministries, causing confusion on site. - At the national level, monitoring and forecasting (sample analysis) overlap between ministries. - It is necessary to operate it according to competent/cooperative departments, taking into account each department’s own tasks. -
dc.description.tableofcontents 요 약 <br><br>제1장 서론 <br>1. 연구의 필요성 및 목적 <br>2. 연구의 범위 <br>3. 연구의 내용 및 수행 체계 <br><br>제2장 야생동물매개 질병에 대한 생태기반 평가 현황 <br>1. 국내에서 발생한 감염성 질병과 팬데믹 <br>2. 전염성 질병의 생태학적 관점으로의 변화 <br>3. 질병 확산의 예측모델 성립: 기계학습과 인공지능을 기반으로 하는 예방 차원의 위험성 평가 <br>4. 사전예방 차원의 위험성 평가와 질병 예측을 위한 생태기반평가의 정책방향 <br><br>제3장 국내 발생 주요 야생동물매개 질병의 질병-생태 통합평가 기반 분석 <br>1. 코로나19 관련 국내 박쥐 생태와 감염병 토착화 대응을 위한 기반 분석 <br>2. 국내 주요 감염성 질병 매개체의 시계열적 공간 분포 및 서식지 이용성 평가 <br><br>제4장 질병-생태 통합평가를 위한 생물다양성 평가 활용방안 <br>1. 계통적 다양성 평가를 위한 포유류 계통도 작성 <br>2. 포유류의 계통적 다양성 평가결과 <br>3. 사례분석: ASF 관련 멧돼지 포획전략에 대한 생물다양성 측면의 영향 평가 <br>4. 질병-생태 통합평가를 위한 생물다양성 평가의 활용방안<br><br>제5장 결론 및 제언 <br>1. 결론 <br>2. 정책 제언<br><br>참고문헌 <br><br>부 록 <br>Ⅰ. 유럽의 ASF 질병 토착화 및 장기화 현황 <br>Ⅱ. 조류인플루엔자 현황(2020년 12월~2021년 2월) <br><br>Executive Summary -
dc.format.extent 239 p. -
dc.language 한국어 -
dc.publisher 한국환경연구원 -
dc.subject 야생동물 매개질병 -
dc.subject 생물다양성 -
dc.subject 통합평가 -
dc.subject 코로나19 -
dc.subject 조류인플루엔자 -
dc.subject Zoonotic Diseases -
dc.subject Biodiversity -
dc.subject Integrated Assessment -
dc.subject Covid-19 -
dc.subject Avian Influenza -
dc.subject ASF -
dc.title 감염성 질병예방을 위한 질병-생태 통합평가시스템 구축 종합연구(I) -
dc.type 사업보고서 -
dc.title.original Development of an Integrated Disease-Ecology Assessment System(I) -
dc.title.partname 사업보고서 -
dc.title.partnumber 2021-11-01 -
dc.rights.openmeta Y -
dc.rights.openimage Y -
dc.contributor.authoralternativename Lee -
dc.contributor.authoralternativename Who-Seung -
dc.contributor.otheralternativename Sagong -
dc.contributor.otheralternativename Hee; Joo -
dc.contributor.otheralternativename Yong-Joon; Yoon -
dc.contributor.otheralternativename Seungho; Kim -
dc.contributor.otheralternativename Sunsuk; Kim -
dc.contributor.otheralternativename Hyekwon; Huettmann -
dc.contributor.otheralternativename Falk; Ji -
dc.contributor.otheralternativename Min-Kyu; Jeong -
dc.contributor.otheralternativename Seulgi -
Appears in Collections:
Reports(보고서) > Project Report(사업보고서)
Files in This Item:

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse